
30 	 Published by the IEEE Computer Society	 1089-7801/08/$25.00 © 2008 IEEE� IEEE INTERNET COMPUTING

W
eb

-S
ca

le
 W

or
kf

lo
w

 T
ra

ck Editors : M . Br ian Blake • mb7@george town .edu
Michael N . Huhns • huhns@sc .edu

Combining the Power
of Taverna and caGrid
Scientific Workflows that
Enable Web-Scale Collaboration

Wei Tan, Ian Foster,
and Ravi Madduri
University of Chicago

Service-oriented architecture represents a promising approach to integrating

data and software across different institutional and disciplinary sources, thus

facilitating Web-scale collaboration while avoiding the need to convert different

data and software to common formats. The US National Cancer Institute’s

Biomedical Information Grid program seeks to create both a service-oriented

infrastructure (caGrid) and a suite of data and analytic services. Workflow

tools in caGrid facilitate both the use and creation of services by accelerating

service discovery, composition, and orchestration tasks. The authors present

caGrid’s workflow requirements and explain how they met these requirements

by adopting and extending the Taverna system.

S ervice-oriented architecture (SOA)
promises to evolve the Web from
an information hub to a machine-

to-machine collaboration platform.1 In
science, where rapid and accurate com-
munication is often vital to progress,
adopting SOA approaches could bring
about “service-oriented science.”2 Bio-
medical research is one field that’s ben-
efitted from Web-scale collaboration
using SOA. (See the “Wrapping Bio-
medical Data as Services” sidebar.)

The effort to virtualize resources
as services in service-oriented science
can foster an ecosystem that facilitates
scientific investigation in a Web-scale
manner. However, a healthy service
ecosystem requires more than interop-

erability: it needs users willing to both
use existing services and develop and
publish a steady stream of new ones.
Thus, we require tools that facilitate
service development, publication, dis-
covery, and composition. (We also re-
quire reward systems that encourage
users to engage in these tasks, but that
topic is beyond this article’s scope.)

Scientific workflows that compose
and orchestrate services are an ap-
proach for meeting these two require-
ments and thus sustain the service
ecosystem. First, scientists usually
achieve scientific explorations through
complex and distributed procedures.
If scientific workflow tools help them
discover services that meet their needs

NOVEMBER/DECEMBER 2008� 31

Taverna and caGrid

and compose those services in a desired se-
quence with a lighter programming burden,
they’ll be more willing to use this ecosystem.
Second, user-created workflows that represent
“best practices” for scientific experimentation
can also be wrapped as services and published
for others to use. This way, users not only con-
sume but also contribute to the system.

The cancer Biomedical Informatics Grid
(caBIG) program (https://cabig.nci.nih.gov/) is
an example of this service-oriented effort in
biomedical research. Sponsored by the US Na-
tional Cancer Institute (NCI), it was established
to let scientists more efficiently share data to
accelerate cancer research. caGrid (www.cagrid.
org), the service-based grid infrastructure for
caBIG, is based on the Globus Toolkit 4.0 grid
middleware.3 The caGrid infrastructure allows
users to wrap a wide variety of cancer-research-
related data sources and analytical capabilities
as services. Nearly 50 cancer centers and 30
other organizations are working collaboratively
on caBIG, and caGrid provides more than 68
services. Thus, users must inevitably construct
more complex experiment routines by compos-
ing multiple services as workflows.

Here, we present the requirements for develop-
ing scientific workflows from caGrid and explain
how we fulfill these requirements by leverag-
ing and enhancing software tools. The caGrid
workflow encounters several challenges, so we
selected a tool called Taverna (http://taverna.

sourceforge.net/) as our solution. We’ve also cre-
ated a caGrid plug-in that extends Taverna with
the ability to orchestrate caGrid services.

Challenges in Scientific Workflow
Service-oriented computing has brought tradi-
tional workflow technology to a Web-scale para-
digm.4 However, new challenges arise when we
adopt workflows in scientific exploration, espe-

Reuse

Generate

Security

Virtualization Connectivity

Scientific workflow lifecycleMedical service infrastucture

Data

Composition

Execution

Discovery

Analysis

Community

Computation
resources

Instruments

Figure 1. Service ecosystem and scientific workflow in biomedical research. A service ecosystem consists of a medical
service infrastructure and data, instruments, and computation resources as services. Scientific workflow involves service
discovery, workflow composition, workflow execution, and result analysis.

Wrapping Biomedical Data as Services

In the main text, the left side of Figure 1 shows that not only data re-
sources (such as a DNA database, large molecular entities, medical

images, clinical trial data, and ontology data) but also computational
functions (protein structural analysis, gene comparison, and data visu-
alization) and even instruments (electron microscopes, oscillographs,
CT scanners, and so on) can be wrapped as services that developers
or users can then publish, discover, and access uniformly. Besides let-
ting developers create these individual services, a cyberinfrastructure
gives users common facilities, such as service virtualization, connec-
tivity, and security. Thus, researchers can obtain data and computa-
tion from the Web instead of the lab and can undertake biomedical
experiments at a Web scale. A UK-based survey identifies four major
data centers and more than 20 smaller ones that collectively provide
services implementing more than 3,000 data access and analysis op-
erations (see www.mygrid.org.uk/wiki/Mygrid/BiologicalWebServices).
One major data center, the DNA data bank of Japan (www.ddbj.nig.
ac.jp/), now holds more than 87 million DNA entries and 91 billion
nucleotide elements.

Data Stream Management

32 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

cially in a Web-scale platform such as caGrid.
Scientific workflow has been the subject of con-
siderable research, and researchers have devel-
oped and validated many systems.5 A caBIG team
performed a comprehensive investigation com-
paring these systems, languages, and tools (see
http://gforge.nci.nih.gov/docman/view.php/332/
7509/icr_workflow_tool_review_2007.doc). The
team concluded that Taverna does a particularly
good job of meeting caGrid’s workflow require-
ments in terms of its full life cycle (see Figure
1). Other existing tools also have many desirable
features, but here we’ll focus on Taverna.

Taverna is an open source workflow work-
bench developed in the myGrid project (www.
mygrid.org.uk). Its goal is to facilitate the use of
workflows and distributed resources within the
e-science community. Taverna provides both a
workflow-authoring tool that uses a proprietary
definition language called Scufl, and an execu-
tion engine compliant with this language. It has
built-in support for accessing many biologi-
cal databases and analytical services, such as
Biomart (www.biomart.org) and Soaplab (www.
ebi.ac.uk/soaplab/). It also provides an exten-
sible framework that lets developers plug in ad-
ditional applications.

To validate the decision to choose Taverna,
let’s look at some research challenges that occur
in the life cycle of scientific workflows and the
Taverna features that align with them. This life
cycle has four stages: services discovery, work-
flow composition, workflow execution, and result
analysis (Figure 1, right). We noticed that the ser-
vice interaction process (discovery, engagement,
and enactment) proposed in the Semantic Web
Service Architecture (SWSA)6 is a well-accepted
one for Semantic Web services. The terms we use
here come more from a scientific workflow per-
spective but can be aligned with SWSA terms.

During these four stages, scientist can great-
ly benefit from community experience through
which they can share data, services, workflows,
and the knowledge obtained by doing experi-
ments. Taverna also has a sister project called
myExperiment (www.myexperiment.org) — a
Web 2.0 community for workflow sharing. For
these reasons, we selected Taverna as the work-
flow “backbone” in caGrid.

Discovery
Choosing which service to use might be trivial
in business workflows because most participant

services are either homemade or outsourced via
contracts. However, scientific workflows exist
in a Web-scale ecosystem in which many orga-
nizations provide many services. Users might
not know these services’ URLs or even their
functions and semantics: because the scientific
community is too autonomous to share a com-
mon terminology, without domain knowledge
it’s impossible to determine a service’s exact se-
mantics using its syntax. A service ecosystem
must establish an agreed-on vocabulary and
use it to annotate services, so that users can
discover them with less ambiguity. Taverna has
an extension point (or scavenger) to aid custom-
ized service discovery. We’ll discuss this more
in the next section.

Composition
In this step, workflow developers compose indi-
vidual services into a workflow that describes the
experiment scientists will undertake. Developers
might add data and control dependencies among
services, or they might transform data if one
service’s output isn’t in the format required for
another service’s input. Developers can perform
composition using general-purpose program-
ming languages such as Java, scripting notations
such as Swift or DAGMan, or even GUIs more
desirable to scientists in a given domain.

Whereas business processes consist of com-
plex control logic, scientific workflows are
more focused on parallel data flow. In a data
flow, tasks and links represent data processing
and data transport, respectively. Tasks without
data dependencies between them can execute
in parallel. Taverna’s modeling style fits in this
dataflow-oriented flavor, which the caGrid com-
munity welcomes.

Execution
At runtime, a workflow engine invokes services
in a predefined order, providing their input and
retrieving their output during the ordered exe-
cution. An engine for scientific workflows should
be aware of the data and computation resources
that it can leverage and, ideally, will plan the
execution to optimize some performance index,
such as execution time or throughput.

Taverna provides a functional model, called
implicit iteration, to ease parallel execution. At
runtime, implicit iteration occurs if a proces-
sor receives more inputs than it expects. This
capability is useful when workflow designers

NOVEMBER/DECEMBER 2008� 33

Taverna and caGrid

can’t estimate inputs’ cardinality at build-time,
which often happens in caGrid workflows. In
contrast, in an imperative language such as the
Web Service Business Process Execution Lan-
guage (WS-BPEL),7 you’d have to add <while>
or <forEach> constructs explicitly for iteration.

Analysis
Scientists create and execute workflows in sup-
port of exploratory research. Component ser-
vices generate intermediate results, and the
workflow yields final results; these results are
of great value and should be stored for later
analysis. Taverna gives each intermediate and
final data item a unique identifier and stores
them properly. Its extension framework lets us-
ers add customized functions such as data visu-
alization, tracking, and querying.

Scientific Workflow in caGrid
Globus-based caGrid services are Web services
invoked by SOAP, with WSDL-defined inter-
faces. Globus implements two sets of Web ser-
vices features that are particularly important
for Web-scale computing: access to stateful re-
sources and secure access.

In scientific computing, users want to access
and manipulate state in service interactions.
For example, scientists might submit a job to a
scheduler and want to query the state of this
specific job instance or get state notification
when the job completes (note that the scheduler
contains multiple job instances). The Web Ser-
vice Resource Framework (WSRF)8 specification
lets service clients access stateful resources. A
resource-generation operation (job submission,
for example) creates a new resource instance

1: newScavenger()

2: query()

3: service list

5: newProcessor()

8: invoke()

6: wsrfConfig()

7: securityConfig()

9: enforceWSRF()

10: enforceSecurity()

11: call()

12: soap rsponse
13: execution result

4: getProcessorList()

Taverna Workbench caGrid Scavenger caGrid Processor caGrid TaskWorker caGrid Service caGrid Index Service

Figure 2. Interaction between Taverna and caGrid plug-in components. The Taverna workbench queries services from
Scavenger, configures Globus extensions in the Processor, and invokes services through TaskWorker.

Data Stream Management

34 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

and returns an element called ReferencePro-
perties that identifies this instance. Resource-
access operations (such as job state query) can
simply launch a SOAP invocation as normal and
insert the ReferenceProperties into the SOAP
header to access a specific resource instance, or
query resource states (called resource properties
in WSRF).

In Web-scale scientific collaboration, se-
cure communication is important for protect-
ing resources across organizational boundaries.
The Grid Security Infrastructure (GSI)9 is a
set of components in the Globus Toolkit that
provides security features. It uses public-key
cryptography to offer functions such as secure
encryption, authentication (identifying the
caller/sender), authorization (checking access
rights), and delegation (performing a task on a
delegator’s behalf).

Our caGrid plug-in for Taverna had certain
requirements. It must

make Taverna aware of caGrid services, so
that caGrid users can choose available ser-
vices they’ll later orchestrate using Taverna;
configure services at build-time with caGrid
properties, such as a resource identifier and
security, if needed; and
receive instruction from the Taverna engine
at runtime to invoke caGrid services with a
possible Globus extension.

We extended three interfaces in Taverna
— the Scavenger, Processor, and TaskWorker
— to integrate it into caGrid. As we mentioned
earlier, a scavenger contains a customized ser-

•

•

•

vices query and the query’s result — that is, a
collection of processors. A processor contains
the build-time information for a single step in-
side a Taverna workflow. Each processor cor-
responds to a TaskWorker interface, which
defines the action the processor will perform at
runtime. Figure 2 shows interactions between
Taverna and the components in the caGrid plug-
in, which we’ll now look at in some detail.

Metadata-Based Service Query
In step 1 (see Figure 2), a user first initiates a
service query through the Taverna workbench
(newScavenger()). The caGrid Scavenger per-
forms this query against service metadata
stored as resource properties of the caGrid in-
dex service, which leverages the caGrid service
metadata definition that Figure 3 illustrates.
The HostingResearchCenter hosts a service,
which might have several PointsOfContact.
Its ServiceContext contains a list of Opera-
tions; each operation has a list of InputParam-
eters and an Output, both of whose data types
can be defined via UMLClasses. caGrid service
metadata annotates Service, Operation, and
UMLClass with SemanticMetadata. caGrid has
defined a common vocabulary for UMLClass and
SemanticMetadata, which users can leverage
for semantic-based querying.

The caGrid plug-in provides three querying
methods:

string based, which lets users locate services
related to “pathology,” for example;
property based, which, for instance, locates
services hosted by “Ohio State University”

•

•

HostingResearchCenter PointOfContact

Service ServiceContext Operation

hostingResearchCenter

 1...*

 1...*
 1...* 0...*

 0...*

 0...*

 0...1
 0...1

 0...*

 0...1

1...*
Service

1

1

1

1

Output

Output
1

service
Service

PointofContactCollection
0...1

InputParameter

UMLClass

umlClass

umlClass

umlClass

inputParameter

1serviceContextCollection1

SemanticMetadata

semanticMetadataCollection

-conceptCode:string
-conceptName:string
-conceptDefinition:string

11

semanticMetadataCollection

Figure 3. caGrid service metadata for service discovery. Users can query caGrid services using these metadata.

NOVEMBER/DECEMBER 2008� 35

Taverna and caGrid

with the name DICOMDataService and the
operation PullOp; and
semantic based, which locates services, for
example, that are semantically annotated as
Core Grid Service.

We can combine these three methods to form
complex queries. Looking at Figure 2, we can
see that the caGrid Scavenger turns user que-
ries into XPath clauses and sends them to a
caGrid index to get a list of services (query()
and service list). The workbench displays
this service list (getProcessorList()) for users
to choose.

caGrid Configuration:
State Management and Security
After the service query, Taverna populates the
workbench with a list of processors that us-
ers can add to build a new workflow (step 5 in
Figure 2, newProcessor()). For Globus-specific
extensions, (step 6, or wsrfConfig()), users
configure ReferenceProperties for processors
by linking resource-generation processors to
resource-access processors. In step 7, security-
Config(), users configure security for proces-
sors, specifying, for example, which certificate
and which encryption method to use.

caGrid Service Invocation
At runtime, when the workflow execution reach-
es a certain processor, Taverna creates a Task-
Worker class that fetches the input data from the
workbench and wraps them into a SOAP mes-
sage body. After that, TaskWorker inspects the
WSRF and security configuration the processor
created and enforces these configurations by
changing the SOAP body and the header accord-
ingly (enforceWSRF() and enforceSecurity()).
Then, TaskWorker sends the SOAP message out
for service invocation (call()) and obtains a
response (soap response). The workbench dis-
plays the returned results (execution result).

You can download the caGrid plug-in from
www-unix.mcs.anl.gov/~madduri/taverna/ and
install it in Taverna (1.7.1.0 or a more recent re-
lease). We’ve tested it with several caGrid work-
flows, one of which we describe next.

Microarray Clustering Workflow:
A Case Study
To illustrate our caGrid plug-in’s application, we
tested it with a microarray hierarchical cluster-

•

ing workflow that involves services hosted at
multiple institutions.

Microarrays are a high-throughput technol-
ogy used to measure the expression of tens of
thousands of genes in different tissues or cells.
Scientists represent the data from each micro-
array via a vector (profile) in which each ele-
ment represents a gene’s expression level. They
use clustering analysis to identify similar ex-
pression profiles across genes or samples.10 In
particular, hierarchical clustering is popular
for grouping microarrays into a multilevel hi-
erarchy in which, at each level, arrays in the
same cluster are more similar to each other
than those in different clusters. To cluster data,
the user must identify and retrieve relevant mi-
croarrays, preprocess them, and then invoke the
hierarchical clustering program. In the past, we
might have programmed this sequence of steps
using a scripting language such as Perl. Instead,
we use Taverna and the caGrid plug-in to iden-
tify relevant services, compose those services
with additional building blocks (for data trans-
formation), and orchestrate their execution. Our
workflow involves three major steps:

Identify and retrieve the microarray data of
interest. We used CQL, the query language
that caGrid Data Services uses, to specify
this data and retrieve it from a caArray
data service hosted at Columbia University
(http://cagridnode.c2b2.columbia.edu:8080/
wsrf/services/cagrid/ CaArrayScrub).
Preprocess, or normalize, the microarray data
before clustering them. We used a GenePattern
analytical service (http://node255.broad.mit.
edu:6060/wsrf/services/cagrid/Preprocess
Dataset MAGEService), which provides nor-
malization, floor and ceiling thresholding,
variation filtering, and other preprocessing
functions. We used an instance of this ser-
vice hosted at MIT’s Broad Institute.
Run hierarchical clustering on the prepro-
cessed data. We invoked the geWorkbench
analytical service Columbia University
hosts (http://cagridnode.c2b2.columbia.edu:
8080/wsrf/ser v ices/cagr id/Hierarchical
ClusteringMage).

Figure 4 illustrates the Taverna workflow. It
contains an input processor to store the CQL ex-
pression, an output processor to store the clus-
tered microarray data (both input and output

1.

2.

3.

Data Stream Management

36 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

processors are blue), three caGrid processors
(green) representing the three caGrid services
just listed, and a few “shim” processors, such
as XML splitters and beanshell scripts, to deal
with data transformation between services.

Once we’ve created our workflow, we can use
Taverna to execute it, monitor its execution, and
examine both its output and the data it produces
at intermediate steps. Figure 5 shows the execu-
tion trace (bottom left) and the execution result
(right), which, in this case, is an XML document
representing the hierarchically clustered arrays.

Compared to our approach, traditional ap-
proaches based on, for example, Perl script-
ing are more time-consuming and error-prone.
Moreover, they can’t handle Web-scale spe-
cific issues, such as services that aren’t visible
or understandable to users or services that are
volatile. In contrast, with our plug-in, we can
discover caGrid services using domain meta-
data, compose, execute, and monitor workflows
in a visualized manner. Overall, we believe that
Taverna offers many desirable features with lit-
tle programming effort.

T he work we’ve described here is a first step
toward providing a comprehensive and easy-

to-use workflow suite that extends scientific in-
vestigations to Web scale. Future work, which
we’re pursuing with the Taverna team, includes
providing more comprehensive security support

and optimizing dataflow execution. For exam-
ple, we plan to improve performance for large
data sets using tools such as GridFTP to direct-
ly transfer data between processors instead of
through the workflow engine.

We believe that the solution and experience
we present here are applicable to other applica-
tion scenarios in related disciplines. We’re work-
ing to apply the same methods to other domains
of experimental and simulation science.�

Acknowledgments
We thank Stian Soiland-Reyes for his great help in using

Taverna and developing the plug-in, and Paolo Missier for

the constructive discussion on Taverna’s modeling style.

We also thank the caGrid team for their help in various

use cases. This project has been funded in whole or in

part with federal funds from the US National Cancer In-

stitute, National Institutes of Health, under contract no.

N01-CO-12400.

References
M.N. Huhns and M.P. Singh, “Service-Oriented Com-

puting: Key Concepts and Principles,” IEEE Internet

Computing, vol. 9, no. 1, 2005, pp. 75–81.

I. Foster, “Service-Oriented Science,” Science, vol. 308,

no. 5723, 2005, pp. 814–817.

I. Foster, “Globus Toolkit Version 4: Software for Ser-

vice-Oriented Systems,” J. Computer Science and Tech-

nology, vol. 21, no. 4, 2006, pp. 513–520.

M.B. Blake and M.N. Huhns, “Web-Scale Workflow: In-

tegrating Distributed Services,” IEEE Internet Comput-

1.

2.

3.

4.

CQL file name

parametersXML

QueryBioAssay

Beanshell_scripting_host

parametersXML4

PreProcessBioAssay

Beanshell_scripting_host1

Workflow inputs

Cluster result

parametersXML3

ClusterBioAssay

Workflow outputs

preprocessDatasetParameterSetXML

PreprocessDatasetParameterSetXML1

hierarchicalParameterXML

hierarchicalParameterXML1

Figure 4. The microarray clustering workflow. It contains I/O processors, caGrid processors, and a few
“shim” processors to deal with data transformation between services.

NOVEMBER/DECEMBER 2008� 37

Taverna and caGrid

ing, vol. 12, no. 1, 2008, pp. 55–59.

W. Tan et al., “Workflow in a Service Oriented Cyber-

infrastructure Environment,” to appear in Cyberinfra-

structure Technologies and Applications, J. Cao, ed.,

Nova Science Publishers, 2008.

M. Burstein et al., “A Semantic Web Services Archi-

tecture,” IEEE Internet Computing, vol. 9, no. 5, 2005,

pp. 72–81.

Oasis, “Web Services Business Process Execution Lan-

guage Version 2.0,” 2007; http://docs.oasis-open.org/

wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html.

I. Foster et al., “Modeling and Managing State in Dis-

tributed Systems: The Role of OGSI and WSRF,” Proc.

IEEE, vol. 93, no. 3, 2005, pp. 604–612.

V. Welch et al., “Security for Grid Services,” Proc. 12th

IEEE Int’l Symp. High Performance Distributed Com-

puting, IEEE CS Press, 2003, pp. 48–57.

M.B. Eisen et al., “Cluster Analysis and Display

of Genome-Wide Expression Patterns,” Proc. Nat’l

Academy of Sciences USA, vol. 95, no. 25, 1998, pp.

14863–14868.

Wei Tan is a research staff member in the Computation

Institute at the University of Chicago and Argonne

5.

6.

7.

8.

9.

10.

National Laboratory. His research interests include

scientific workflow, service-oriented computing, and

Petri nets. Tan has a PhD in automation science and

engineering from Tsinghua University, China. Contact

him at wtan@mcs.anl.gov.

Ian Foster is director of the Computation Institute at the

University of Chicago and Argonne National Labora-

tory and the Arthur Holly Compton Distinguished Ser-

vice Professor of computer science at the University

of Chicago. His research interests include distributed

computing, parallel computing, and computational sci-

ence. Foster has a PhD in computer science from Impe-

rial College, London. Contact him at foster@anl.gov.

Ravi Madduri is a senior software developer with the math-

ematics and computer science division at Argonne

National Laboratory. He’s been worked on data man-

agement and resource management components of the

Globus Toolkit for the past seven years. He’s also a lead

architect of the workflow technologies with the caBIG

project. Madduri has a master’s degree in computer sci-

ence from the Illinois Institute of Technology, Chicago.

Contact him at madduri@mcs.anl.gov.

Figure 5. Execution trace and results for the microarray clustering workflow. In this case, Taverna
created an XML document representing the hierarchically clustered arrays.

